روشهای بیوتکنولوژی اصلاح گیاهان دارویی
حفاظت گونههای گیاهان دارویی از طریق نگهداری در سرما
با
تکیه بر کشت بافت و سلول میتوان برای نگهداری کالتیوارهای مورد نظر در
بانک ژن یا برای نگهداری طولانی مدت اندامهای تکثیر گیاه در محیط نیتروژن
مایع، اقدام نمود. نگهداری در سرما، یک تکنیک مفید جهت حفاظت از کشتهای
سلولی در شرایط آزمایشگاهی است. در این روش با استفاده از نیتروژن مایع
(196- درجه سانتیگراد) فرآیند تقسیم سلولی و سایر فرآیندهای متابولیکی و
بیوشیمیایی متوقف شده و در نتیجه میتوان بافت یا سلول گیاهی را مدت زمان
بیشتری نگهداری و حفظ نمود. با توجه به اینکه میتوان از کشتهای نگهداری
شده در سرما، گیاه کامل باززایی کرد، لذا این تکنیک میتواند روشی مفید جهت
حفاظت از گیاهان دارویی در معرض انقراض باشد. مثلاً بر اساس گزارشات منتشر
شده، روش نگهداری در سرما، روشی مؤثر جهت نگهداری کشتهای سلولی گیاهان
دارویی تولیدکننده آلکالوئید همچون Rauvollfia serpentine , D. lanalta ,
A. belladonna , Hyoscyamus spp. است. این تکنیک، میتواند جهت نگهداری
طیفی از بافتهای گیاهی چون مریستمها، بساک و دانه گرده، جنین، کالوس و
پروتوپلاست بهکار رود. تنها محدودیت این روش، مشکل دسترسی به نیتروژن مایع
است.
تولید متابولیتهای ثانویه از گیاهان دارویی
از لحاظ تاریخی،
اگرچه تکنیک ” کشت بافت ” برای اولین بار، در سالهای 1940-1939 در مورد
گیاهان بهکار گرفتهشد، ولی در سال 1956 بود که یک شرکت دارویی در کشور
آمریکا (Pfizer Inc) اولین پتنت را در مورد تولید متابولیتها با استفاده
از کشت تودهای سلولها منتشر کرد. کول و استابو (1967) و هبل و همکاران
(1968) توانستند مقادیر بیشتری از ترکیبات ویسناجین (Visnagin) و
دیوسجنین (Diosgenin) را با استفاده از کشت بافت نسبت به حالت طبیعی
(استخراج از گیاه کامل) بهدست آورند. گیاهان، منبع بسیاری از مواد
شیمیایی هستند که بهعنوان ترکیب دارویی مصرف میشوند. فرآوردههای حاصل از
متابولیسم ثانویه گیاهی (Secondary Metabolite) جزو گرانبهاترین ترکیب
شیمیایی گیاهی (Phytochemical) هستند. با استفاد از کشت بافت میتوان
متابولیتهای ثانویه را در شرایط آزمایشگاهی تولید نمود. لازم بهذکر است
که متابولیتهای ثانویه، دستهای از مواد شامل اسیدهای پیچیده، لاکتونها،
فلاونوئیدها و آنتوسیانینها هستند که بهصورت عصاره یا پودرهای گیاهی در
درمان بسیاری از بیماریهای شایع بهکار برده میشوند.
راهکارهای افزایش متابولیتهای ثانویه گیاهی از طریق کشت بافت
1-
استفاده از محرکهای (Elicitors) زنده و غیر زندهای که میتوانند
مسیرهای متابولیکی سنتز متابولیتهای ثانویه را تحت تأثیر قرار داده و
میزان تولید آنها را افزایش دهند. لازم بهذکر است که این محرکها در شرایط
طبیعی نیز بر گیاه تأثیر گذاشته و باعث تولید یک متابولیت خاص میشوند.
2-
افزودن ترکیب اولیه (Precursor) مناسب به محیطکشت، با این دیدگاه که
تولید محصول نهایی در نتیجه وجود این ترکیبات در محیطکشت، القاء شود.
3- افزایش تولید یک متابولیت ثانویه در اثر ایجاد ژنوتیپهای جدیدی که از طریق امتزاج پروتوپلاست یا مهندسی ژنتیک، بهدست میآیند.
4- استفاده از مواد موتاژن جهت ایجاد واریتههای پربازده
5- کشت بافت ریشه گیاهان دارویی (ریشه، نسبت به بافتهای گیاهی دیگر، پتانسیل بیشتری جهت تولید متابولیتهای ثانویه دارد)
مثالهای
قابل ذکر آنقدر زیاد است که تصور میشود هر مادهای با منشاء گیاهی، از
جمله، متابولیتهای ثانویه را میتوان بهوسیله کشتهای سلولی تولید کرد:
از جمله ترکیباتی که از طریق کشت سلولی و کشت بافت به تولید انبوه رسیده
است، داروی ضد سرطان تاکسول است. این دارو که در درمان سرطانهای سینه و
تخمدان بهکار میرود از پوست تنه درخت سرخدار (Taxus brevilifolia L.)
استخراج میگردد. از آنجاییکه تولید تاکسول بهدلیل وجود 10 هسته
استروئیدی در ساختار شیمیایی آن بسیار مشکل است و جمعیت طبیعی درختان
سرخدار نیز برای استخراج این ماده بسیار اندک است، لذا راهکار دیگری را
برای تولید تاکسول باید بهکار گرفت. در حال حاضر، برای تولید تاکسول از
تکنیک کشت بافت و کشت قارچهایی که بر روی درخت رشد کرده و تاکسول تولید
میکنند، استفاده میگردد.
سولاسودین (Solasodine) نیز از ترکیبات
دیگری است که از طریق کشت سوسپانسیون سلولی گیاه Solanum eleganifoliu
بهدست میآید. از جمله متابولیتهای دیگری که از طریق تکنیک کشت بافت و در
مقیاس تجاری تولید میشود، شیکونین (Shi**n) (رنگی با خاصیت ضد حساسیت
و ضد باکتری) است. مثالهای زیر گویای کارایی تکنیک کشت بافت در تولید
متابولیتهای ثانویه است.
تولید آلکالوئید پیرولیزیدین (Pyrolizidine)
از کشت بافت ریشه Senecio sp، سفالین (Cephaelin) و امتین (Emetine)
از کشت کالوس Cephaelis ipecacuanha، آلکالوئید کوئینولین (Quinoline)
از کشت سوسپانسیون سلولی Cinchona ledgerione و افزایش بیوسنتز
آلکالوئیدهای ایندولی با استفاده از کشت سوسپانسیون سلولی گیاه
Catharanthus roseus.
استفاده از بیورآکتورها در تولید صنعتی متابولیتهای ثانویه
تولید
متابولیت ثانویه گیاهی با خصوصیات دارویی در شرایط آزمایشگاهی، فواید
زیادی در مقایسه با استخراج این ترکیبات از گیاهان، تحت شرایط طبیعی دارد.
کنترل دقیق پارامترهای مختلف، سبب میشود که کیفیت مواد حاصل در طول زمان
تغییر نکند. درحالی که در شرایط طبیعی مرتباٌ تحت تأثیر شرایط آب و هوایی و
آفات است. تحقیقات زیادی در زمینه استفاده از کشتهای سوسپانسیون و سلول
گیاهی برای تولید متابولیتهای ثانویه صورت گرفته است. از جمله ابزارهایی
که برای کشت وسیع سلولهای گیاهی بهکار رفتهاند، بیورآکتورها هستند.
بیورآکتورها، مهمترین ابزار در تولید تجاری متابولیتهای ثانویه از طریق
روشهای بیوتکنولوژیک، محسوب میشوند.
مزایای استفاده از بیورآکتورها در کشت انبوه سلولهای گیاهی عبارتند از:
1- کنترل بهتر و دقیقتر شرایط خاص مورد نیاز برای تولید صنعتی ترکیبات فعال زیستی از طریق کشت سوسپانسیون سلولی
2- امکان تثبیت شرایط در طول مراحل مختلف کشت سلولی در بیورآکتور
3- جابجایی و حملونقل آسانتر کشت (مثلاً، برداشتن مایهکوبه در این حالت راحت است)
4-
با توجه به اینکه در شرایط کشت سوسپانسیون، جذب مواد غذایی بهوسیله
سلولها افزایش مییابد، لذا نرخ تکثیر سلولها زیاد شده و بهتبع آن میزان
محصول (ترکیب فعال زیستی) بیشتر میشود.
5- در این حال، گیاهچهها به آسانی تولید و ازدیاد میشوند.
سیستم
بیورآکتور برای کشتهای جنینزا و ارگانزای چندین گونه گیاهی بهکار رفته
است که از آنجمله میتوان به تولید مقادیر زیادی سانگئینارین (
sanguinarine) از کشت سوسپانسیون سلولی Papaver somniferum با استفاده از
بیورآکتور، اشاره کرد. با توجه به اینکه بیورآکتورها، شرایط بهینه را برای
تولید متابولیتهای ثانویه از سلولهای گیاهی فراهم میآورند، لذا تغییرات
زیادی در جهت بهینهسازی این سیستمها، برای تولید مواد با ارزش دارویی (با
منشأ گیاهی) همچون جینسنوساید (ginsenoside) و شیکونین صورت گرفته است.
نشانگرهای مولکولی
بخش
مهم بعدی دارای کاربرد فراوان در حوزه گیاهان دارویی، “نشانگرهای مولکولی”
است. قبل از اینکه به موارد کاربرد نشانگرهای مولکولی پرداخته شود، لازم
است دلایل لزوم استفاده از نشانگرهای مولکولی در زمینه گیاهان دارویی ذکر
شود:
دلایل استفاده از نشانگرهای مولکولی در زمینه گیاهان دارویی
فاکتورهایی
همچون خاک و شرایط آب و هوایی، بقای یک گونه خاص و همچنین محتوای ترکیب
دارویی این گیاه را تحت تأثیر قرار میدهند. در چنین حالاتی علاوه بر اینکه
بین ژنوتیپهای مختلف یک گونه تفاوت دیده میشود از لحاظ ترکیب دارویی
فعال نیز با هم فرق میکنند. در هنگام استفاده تجاری، از این گیاه دو
فاکتور، کیفیت نهایی داروی استحصالی از این گیاه را تحت تأثیر قرار
میدهند:
1- تغییر محتوای یک ترکیب دارویی خاص در گیاه مورد نظر
2-
اشتباه گرفتن یک ترکیب دارویی خاص با اثر کمتر که از گیاهان دیگر بهدست
آمده است. بهجای ترکیب دارویی اصلی که از گیاه اصلی بهدست میآید.
چنین
تفاوتهایی، مشکلات زیادی را در تعیین و تشخیص گیاهان دارویی خاص، با
استفاده از روشهای سنتی (مرفولوژیکی و میکروسکوپی)، بهدنبال خواهد داشت.
برای روشنشدن موضوع به مثال زیر توجه کنید:
کوئینون یک ترکیب دارویی
است که از پوست درخت سینکونا (cinchona) بهدست میآید. پوست درختان
سینکونا که در جلگهها کشت شدهاند، حاوی کوئیونی است که از لحاظ دارویی
فعال است. گونههای مشابهی از این درخت وجود دارند که بهروی تپهها و
زمینهای شیبدار رشد میکنند و از لحاظ مرفولوژیکی (شکل ظاهری) مشابه
گونههایی هستند که در جلگهها رشد میکنند، اما در این گونهها کوئیون
فعال وجود ندارد.
در طول دهههای گذشته، ابزارهایی که برای
استانداردسازی داروهای گیاهی بهوجود آمدهاند، شامل ارزیابی ماکروسکوپیک و
میکروسکوپیک و همچنین تعیین نیمرخ شیمیایی (Chemoprofiling) مواد گیاهی
بودهاند. قابل ذکر است که نیمرخ شیمیایی، الگوی شیمیایی ویژهای برای یک
گیاه است که از تجزیه عصاره آن گیاه بهوسیله تکنیکهایی چون TLC و HPTLC و
HPLC بهدست آمده است. ارزیابی ماکروسکوپیک مواد گیاهی نیز بر اساس
پارامترهایی چون شکل، اندازه، رنگ، بافت، خصوصیات سطح گیاه، مزه و غیره
صورت میگیرد. علاوه بر این، بسیاری از تکنیکهای آنالیز، همچون آنالیز
حجمی (Volumetric Analysis)، کروماتوگرافی گازی (Gas Chromatography)،
کروماتوگرافی ستونی (Column Chromatography) و روشهای اسپکتروفتومتریک
نیز برای کنترل کیفی و استانداردسازی مواد دارویی گیاهی، مورد استفاده قرار
میگیرند.
گرچه در روشهای فوق، اطلاعات زیادی در مورد یک گیاه دارویی و
ترکیبات دارویی موجود در آن فراهم آید، ولی مشکلات زیادی نیز بههمراه
دارد. مثلاً برای اینکه یک ترکیب شیمیایی بهعنوان یک نشانگر (Marker)
جهت شناسایی یک گیاه دارویی خاص، مورد استفاده قرار گیرد، باید مختص
همانگونه گیاهی خاص باشد، در حالیکه همه گیاهان دارویی، دارای یک ترکیب
شیمیایی منحصربهفرد نیستند. همچنین بین بسیاری از مولکولهای شیمیایی که
بهعنوان نشانگر و یا ترکیب دارویی خاص مدنظر هستند، همپوشانی معنیداری
وجود دارد؛ این موضوع در مورد ترکیبات فنولی و استرولی حادتر است.
یکی
از عوامل مهم دیگری که استفاده از نیمرخ شیمیایی را محدود میسازد، ابهام
در دادههای حاصل از انگشتنگاری شیمیایی (Chemical Fingerprinting) است.
این ابهام، در اثر تجمع مواد مصنوعی در پروفیل شیمیایی حادث میشود. علاوه
بر این، فاکتورهای دیگری، پروفیل شیمیایی یک گیاه را تغییر میدهند. که از
جمله این فاکتورها میتوان فاکتورهای درونی چون عوامل ژنتیکی و فاکتورهای
برونی چون کشت، برداشت، خشککردن و شرایط انبارداری گیاهان دارویی را ذکر
نمود. مطالعات شیموتاکسونومیکی (طبقهبندی گیاهان بر اساس ترکیبات شیمیایی
موجود در گیاه) که بهطور معمول در آزمایشگاههای مختلف استفاده میشوند،
تنها میتوانند بهعنوان معیار کیفی در مورد متابولیتهای ثانویه، مورد
استفاده قرار میگیرند و برای تعیین کمی این ترکیبات، استفاده از نشانگرهای
ویژه (شیمیایی) که بهکمک آن به آسانی بتوان گونههای گیاهان دارویی را از
یکدیگر تشخیص داد، یک الزام است. در این رابطه، همانطور که در فوق ذکر
شد، در هرگیاه یک نشانگر منحصر به فرد را نمیتوان یافت.
مشکلی که در
شناسایی گونههای گیاهان دارویی با استفاده از صفات مرفولوژیک وجود دارد،
وجود نامهای گیاهشناسی متفاوت در مورد یک گیاه در نواحی مختلف جهان است.
در این حالت ممکن است گونههای گیاهان دارویی نادر و مفید، با گونههای
دیگری که از لحاظ مرفولوژیکی به گیاه اصلی شبیهاند، اشتباه فرض شوند.
بنابراین،
با توجه به مشکلات موجود در زمینه شناسایی گیاهان دارویی با استفاده از
روشهای سنتی و با توجه به پیشرفت محققین در زمینه ایجاد نشانگرهای DNA ،
استفاده از این تکنیکهای نوین میتواند ابزاری قدرتمند در استفاده کارا
از گونههای مؤثر دارویی محسوب شود. از جمله مزایای این نشانگرها، عدم
وابستگی به سن و شرایط فیزیولوژیکی و محیطی گیاه دارویی است. پروفیلی که از
انگشت نگاری DNA یک گیاه دارویی بهدست میآید، کاملاً به همان گونه
اختصاص دارد. همچنین برای استخراج DNA بهعنوان ماده آزمایشی در آزمایشات
نشانگرهای مولکولی، علاوه بر بافت تازه، میتوان از بافت خشک نیز استفاده
نمود و از این رو، شکل فیزیکی نمونه برای ارزیابی آن گونه، اهمیت ندارد.
نشانگرهای مختلفی بدین منظور ایجاد شدهاند که از آن جمله میتوان به
روشهای مبتنی بر هیبریداسیون (مانند RFLP)، روشهای مبتنی بر RCR (مانند
AFLP) و روشهای مبتنی بر توالییابی (مانند ITS) اشاره کرد.
برخی موارد کاربرد نشانگرهای DNA در زمینه گیاهان دارویی
ارزیابی تنوع ژنتیکی و تعیین ژنوتیپ (Genotyping)
تحقیقات
نشان داده است که شرایط جغرافیایی، مواد دارویی فعال گیاهان دارویی را از
لحاظ کمی و کیفی، تحت تأثیر قرار میدهد. بر پایه تحقیقات انجام شده،
عوامل محیطی محل رویش گیاهان دارویی در سه محور زیر بر آنها تاثیر
میگذارد:
1- تاثیر بر مقدار کل ماده مؤثره گیاهان دارویی
2- تاثیر بر عناصر تشکیل دهنده مواد مؤثره
3- تاثیر بر مقدار تولید وزن خشک گیاه
عوامل
محیطی که تاثیر بسیار عمدهای بر کمیت و کیفیت مواد مؤثره آنها میگذارد
عبارتنداز نور، درجه حرارت، آبیاری و ارتفاع محل. بنابراین نیاز است که
بهدقت این موضوع مورد بررسی قرار گیرد. به این خاطر، بسیاری از محققین،
تأثیر تنوع جغرافیایی بر گیاهان دارویی را از لحاظ تغییرات در سطوح مولکول
DNA (ژنتیک) مطالعه نمودهاند. این برآوردها از تنوع ژنتیکی میتواند در
طراحی برنامههای اصلاحی گیاهان دارویی و همچنین مدیریت و حفاظت از
ژرمپلاسم آنها بهکار رود.
شناسایی دقیق گیاهان دارویی
از نشانگرهای
DNA میتوان برای شناسایی دقیق گونههای گیاهان دارویی مهم، استفاده کرد.
اهمیت استفاده از این نشانگرها، بهویژه در مورد گونهها و یا واریتههایی
که از لحاظ مرفولوژیکی و فیتوشیمیایی به هم شبیهند، دوچندان میشود. گاهی
ممکن است بر اثر اصلاح گیاهان دارویی کالتیوارهایی بهوجود آید که هر چند
از نظر ظاهر با سایر افراد آنگونه تفاوتی ندارد ولی از نظر کمیت و کیفیت
مواد مؤثره اختلافهای زیادی با آنها داشته باشد. در این حالت
اصلاحکنندگان چنین گیاهانی باید تمام مشخصات آن کالتیوار را از نظر
خصوصیات مواد مؤثره ارایه دهند که شناسایی و معرفی خصوصیات مذکور مستلزم
صرف هزینه و زمان زیاد از نظر کسب اطلاعات گسترده درباره فرآیندهای
متابولیسمی گیاه مربوطه است. بهعلاوه امکان تغییرپذیری وضعیت تولید و
تراوش مواد مؤثره در مراحل مختلف رویش گیاه همواره باید مورد نظر
اصلاحکننده قرار داشتهباشد. بهعنوان مثال، از نشانگرهای RAPD و PBR برای
شناسایی دقیق گونه P.ginseng در بین جمعیتهای جینسنگ (ginseng) استفاده
شده است. همچنین برخی از محققین از یک راهکار جدید بهنام DALP (Direct
Amplification of Length Polymorphism) برای شناسایی دقیق Panax ginseng و
Panax quinquefolius استفاده کردهاند.
انتخاب کیموتایپهای (Chemotypes) مناسب بهکمک نشانگر
علاوه
بر شناسایی دقیق گونهها، پیشبینی غلظت ماده شیمیایی فعال گیاهی (Active
Phytochemical) نیز برای کنترل کیفی یک گیاه دارویی مهم است. شناسایی
نشانگرهای (DNA QTL) که با مقدار آن ترکیب دارویی خاص همبستگی دارند،
میتواند جهت کنترل کیفی و کمی مواد خام گیاهی، مؤثر واقع شود. لازم بهذکر
است که تنها تفاوت بین کیموتایپهای مختلف، مقدار ماده شیمیایی فعال آنها
است. همچنین، پروفیلهای حاصل از نشانگرهای DNA میتوانند جهت تعیین روابط
فیلوژنتیکی (خویشاوندی) بین کیموتایپهای مختلف یک گونه گیاه دارویی بهکار
روند. در سالهای اخیر مطالعات زیادی بهمنظور تعیین رابطه بین نشانگرهای
DNA و تنوعات کمی وکیفی ترکیبات فعال دارویی در بین گونهها و خویشاوندان
نزدیک گیاهان دارویی، صورت گرفته و یا در حال انجام است. از طرفی،
بهکارگیری توأم تکنیکهای مولکولی و تکنیکهای آنالیزی دیگر، چون TLC و
HPLC، میتواند شناخت ما را نسبت به یک گونه دارویی خاص و به تبع آن کنترل
کیفی و کمی ترکیب دارویی مورد نظر در سطح صنعتی، افزایش دهد. بهعنوان
مثال بررسی تنوع ژنتیکی Artemisia annua، بهعنوان منبع ترکیب ضد ملاریای
آرتمیزینین (artemisinin)، نشان میدهد که ژنوتیپهای این گیاه در سراسر
هند، از لحاظ محتوای این ترکیب (مقدار ماده مؤثره آرتمزینین)، تنوع نشان
میدهند. این بررسی با استفاده از نشانگر RAPD (یک نوع نشانگر DNA) صورت
گرفته است.
مهندسی ژنتیک
شاخه بعدی بیوتکنولوژی که در زمینه گیاهان دارویی کاربردهای فراوانی دارد، “مهندسی ژنتیک” است. پیشرفتهای اخیر در زمینه ژنتیک گیاهی و تکنولوژی DNA نوترکیب، کمک شایانی به بهبود و تقویت تحقیقات در زمینه بیوسنتز متابولیتهای ثانویه کرده است. قسمت اعظمی از تحقیقات در زمینه متابولیتهای ثانویه، بهروی شناسایی و دستکاری ژنتیکی آنزیمهای دخیل در مسیر متابولیکی سنتز یک متابولیت ثانویه، متمرکز شدهاست. ابزار طبیعی که در فرآیند مهندسی ژنتیک و در اکثر گونههای گیاهی و بخصوص گیاهان دولپه بهکار میرود، یک باکتری خاکزی بهنام آگروباکتریوم (Agrobacterium) است. گونههای مختلف این باکتری، مهندسان طبیعی هستند که بیماریهای تومور گال طوقه (Crown Gall Tumour) و ریشه مویی (Hairy Root) را در گیاهان سبب میشوند. تحقیقات نشان دادهاست که ریشههای مویی تولید شده بهوسیله گونهای از این باکتری بهنام A. rhizogenes ، بافتی مناسب برای تولید متابولیت ثانویه هستند. به علت پایداری و تولید زیاد این بافتها در شرایط کشت عاری از هورمون، تاکنون گونههای دارویی زیادی با استفاده از این باکتری تغییر یافتهاند. که از آن جمله میتوان به کشت ریشه مویی گیاه دارویی Artemisia annua بهمنظور تولید ترکیب دارویی فعال، اشاره کرد. تحقیقات نشان داده است که شرایط جغرافیایی، مواد دارویی فعال گیاهان دارویی را از لحاظ کمی و کیفی، تحت تأثیر قرار میدهد.
بنابراین میتوان دید که مهندسی ژنتیک میتواند بهعنوان ابزاری قدرتمند جهت تولید متابولیتهای ثانویه جدید و همچنین افزایش مقدار متابولیتهای ثانویه موجود در یک گیاه بهکار رود
منبع: http://plantbreeding.wordpress.com
- لینک منبع
تاریخ: سه شنبه , 08 فروردین 1402 (14:16)
- گزارش تخلف مطلب